
UNIT-3

• Bottom up Parsing: Reductions – Handle
Pruning - Shift Reduce Parsing – Conflicts
During Shift–Reduce Parsing.

• Introduction to simple LR Parsing:
• Why LR Parsers – Items and LR(0) Automaton -

The LR-Parsing Algorithm - Constructing SLR–
Parsing Tables

Bottom up Parsing

• A bottom-up parse corresponds to the
construction of a parse tree for an input string
beginning at the leaves (the bottom) and
working up towards the root(the top).

Example

Reductions

• bottom-up parsing as the process of "reducing"
a string w to the start symbol of the grammar.

• At each reduction step, a specific substring
matching the body of a production is replaced by
the non terminal at the head of that production.

• The key decisions during bottom-up parsing are
about when to reduce and about what
production to apply.

• A reduction is the reverse of a step in a
derivation

• The goal of bottom-up parsing is therefore to
construct a derivation in reverse

• E T T F T id F id id id.
• This derivation is in fact a rightmost

derivation.

Handle Pruning

• Bottom-up parsing during a left-to-right scan
of the input constructs a right-most derivation
in reverse.

• Informally, a "handle" is a substring that
matches the body of a production, and whose
reduction represents one step along the
reverse of a rightmost derivation.

• The leftmost substring that matches the body
of some production need not be a handle.

• A rightmost derivation in reverse can be
obtained by "handle pruning." That is, we start
with a string of terminals w to be parsed.

Shift-Reduce Parsing
• Shift-reduce parsing is a form of bottom-up parsing in which

a stack holds grammar symbols and an input buffer holds
the rest of the string to be parsed.

• As we shall see, the handle always appears at the top of the
stack just before it is identified as the handle.

• We use $ to mark the bottom of the stack and also the right
end of the input.

• Conventionally, when discussing bottom-up parsing, we
show the top of the stack on the right, rather than on the
left as we did for top-down parsing.

• Initially, the stack is empty, and the string w is on the input,
as follows:

• During a left-to-right scan of the input string, the parser shifts
zero or more input symbols onto the stack, until it is ready to
reduce a string /3 of grammar symbols on top of the stack.

• It then reduces /3 to the head of the appropriate production.

• The parser repeats this cycle until it has detected an error or
until the stack contains the start symbol and the input is
empty

• Upon entering this configuration, the parser halts and
announces successful completion of parsing.

• Steps through the actions a shift-reduce parser might take in
parsing the input string id id according to the expression
grammar

• While the primary operations are shift and reduce, there
are actually four possible actions a shift-reduce parser
can make: (1) shift, (2) reduce, (3) accept, and (4) error.

• Shift. Shift the next input symbol onto the top of the
stack.

• Reduce. The right end of the string to be reduced must
be at the top of the stack. Locate the left end of the
string within the stack and decide with what non
terminal to replace the string.

• Accept. Announce successful completion of parsing.
• Error. Discover a syntax error and call an error recovery

routine.

• Consider the grammar
S –> S + S
S –> S * S
S –> id

• Perform Shift Reduce parsing for input string
“id + id + id”

• Consider the grammar
S –> (L) | a
L –> L , S | S

Perform Shift Reduce parsing for input string
“(a, (a, a)) “.

• The use of a stack in shift-reduce parsing is justified by an
important fact: the handle will always eventually appear on top
of the stack, never inside.

• This fact can be shown by considering the possible forms of
two successive steps in any rightmost derivation.

Conflicts During Shift-Reduce Parsing
• There are context-free grammars for which shift-reduce

parsing cannot be used.
• Every shift-reduce parser for such a grammar can reach a

configuration in which the parser, knowing the entire stack
contents and the next input symbol, cannot decide whether
to shift or to reduce (a shift/reduce conflict), or cannot decide
which of several reductions to
make (a reduce/reduce conflict).

• We now give some examples of syntactic constructs that give
rise to such grammars.

• Technically, these grammars are not in the LR(K) class of
grammars defined we refer to them as non-LR grammars.

• The k in LR(k) refers to the number of symbols of look ahead
on the input. Grammars used in compiling usually fall in the
LR(1) class, with one symbol of look ahead at most.

CS416 Compiler Design 21

Conflicts During Shift-Reduce Parsing

• There are context-free grammars for which shift-
reduce parsers cannot be used.

• Stack contents and the next input symbol may not
decide action:
– shift/reduce conflict: Whether make a shift operation or a reduction.
– reduce/reduce conflict: The parser cannot decide which of several

reductions to make.

• If a shift-reduce parser cannot be used for a grammar,
that grammar is called as non-LR(k) grammar.

left to right right-most k lookhead
scanning derivation

• An ambiguous grammar can never be a LR grammar.

• Introduction to simple LR Parsing:
• Why LR Parsers – Items and LR(0) Automaton -

The LR-Parsing Algorithm - Constructing SLR–
Parsing Tables

Shift-Reduce Parsers

• There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser
– simple, but only a small class of grammars.

2. LR-Parsers
– covers wide range of grammars.

• SLR – simple LR parser
• Canonical LR – most general LR parser
• LALR – intermediate LR parser (lookhead LR parser)

– SLR, CLR and LALR work same, only their parsing tables are different.

SLR

CFG
CLR
LALR

STEP 1

